Indices

 $\begin{array}{ll} (1) \ a^m \times a^n = a^{m+n} \\ eg. \ 10^3 \ge 10^2 = 10^{3+2} = 10^5 \\ (2) \ a^m \div a^n = a^{m-n} \ ; \ m > n & , \ a \neq 0 \\ eg. \ 8^4 \div 8^2 = 8^{4-2} = 8^2 \\ (3) \ (a^m)^n = a^{m \times n} \\ eg. \ \ (6^4)^2 = 6^{4 \times 2} \\ (4) \ (a \times b)^m = a^m \times b^m \\ eg. \ \ (5 \times 3)^6 = 5^6 \times 3^6 \\ (5) \ \left(\frac{a}{b}\right)^m = \frac{a^m}{b^n} \ ; \ b \neq 0 \\ eg. \ \ \left(\frac{5}{4}\right)^8 = \frac{5^8}{4^8} \\ (6) \ a^0 = 1 \qquad eg.7^0 = 1 \\ (7) \ a^{-m} = \frac{1}{a^m} \qquad eg.5^{-3} = \frac{1}{5^3} \end{array}$

Area of Triangle

To find the area of triangle, given the base and height $=\frac{1}{2} \times Base \times Height$

To find the area of triangle when the length of all its three sides are given

Area of a triangle $=\sqrt{s(s-a)(s-b)(s-c)}$ In the above formula a, b, c are the sides of a triangle and s is the semi-perimeter of triangle. $s = \frac{1}{2}(a+b+c)$

Identities-Expansion, Factors

- $(1) \ (a+b)^2 = a^2 + 2ab + b^2$
- (2) $(a-b)^2 = a^2 2ab + b^2$
- (3) $(a+b)(a-b) = a^2 b^2$

(4)
$$(x + a)(x + b) = (x + a) \times x + (x + a) \times b$$

= $x^{2} + ax + bx + ab$
= $x^{2} + (a + b)x + ab$

$$(5) \ (a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

$$(6) \ (a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$

(7)
$$(a^3 + b^3) = (a + b) (a^2 - ab + b^2)$$

(8)
$$(a^3 - b^3) = (a - b) (a^2 + ab + b^2)$$

Arc of a Circle

Circumference of the circle

(1) $C = 2\pi r$ *i.e* $2 \times \pi \times r$ Formula (1) is used to find the circumference when radius is known (2) $C = \pi d$ *i.e* $\pi \times d$ Formula (2) is used find the circumference when diameter is known In the above formulas value of π can be taken as $\frac{22}{7}$, if it's not given

Length of an Arc

Length of an arc = $\frac{\theta}{360} \times 2\pi r$ θ is the angular mesure and r is the radius of the circle

Area of a Circle

Area of a Circle $=\pi \times r^2$ *i.e* $\pi \times r \times r$ Here r is the radius of the circle

Area of the sector of circle

Area of the sector of circle $=\frac{\theta}{360} \times \pi r^2$ Here θ is the angular measure of the arc and r is the radius

Compound Interest

 $I = \frac{P \times N \times R}{100}$ I = Simple Interest P = Principal N = Number of yearsR = Rate of Interest

A = P + I ; A is the Amount and it includes Principal and Interest accured

Amount(A) by compound interest
=
$$Principal\left(1 + \frac{Rate}{100}\right)^{Period}$$

i.e (A) = $P\left(1 + \frac{R}{100}\right)^{N}$

Volume and Surface Area

Cylinder

Volume of a Cylinder $= \pi r^2 h$ *i.e* $\pi \times r \times r \times h$ Curved Surface area of a cylinder $= 2\pi rh$ *i.e* $2 \times \pi \times r \times h$ Total surface area of a cylinder $= 2\pi r(h+r)$ *i.e* $2 \times \pi \times r \times (h+r)$

In the formula r is the radius of the base of a cylinder and h is the height

Cone

Volume of the cone $=\frac{1}{3} \times \pi r^2 h$ Curved Surface Area of the cone $= \pi r l$ Total Surface Area of the cone $= \pi r (l + r)$ In the formula r is radius of the base of the cone and h is the height and l is the slant height if any two l, r, h are given and you need to find the third one, then you use the formula $l^2 = h^2 + r^2$

Sphere

Volume of the sphere $=\frac{4}{3} \times \pi r^3$ Surface area of the sphere $=4\pi r^2$ r is the radius of the sphere

Sets

Complement of set

For a set A if A' is it's complement then (A')' = A
 If U is an universal set and U' is its complement then U'= φ
 if φ denotes and empty set then φ' = U
 where φ' is complement of φ

Properties of union of sets

Here A and B are two subsets of universal set U then 1) $A \cup B = B \cup A$ 2) If $A \subseteq B$ then $A \cup B = B$ 3) If $A \subseteq A \cup B$ 4) $A \cup A' = U$ 5) $A \cup A = A$ 6) $A \cup \phi = A$

Properties of intersection of sets

1) $A \cap B = B \cap A$ 2) If $A \subseteq B$ then $A \cap B = A$ 3) $A \cap B \subseteq A$ and $A \cap B \subseteq B$ 4) $A \cap A' = \phi$ 5) $A \cap A = A$ 6) $A \cap \phi = \phi$

Number of elements in a set

Number of element in the set A is denoted by n(A) we have $n(A \cup B) = n(A) + n(B) - n(A \cap B)$ if set A and B are disjoints then $n(A \cap B) = 0$ and we have

if set A and B are disjoints then $n(A\cap B)=0$ and we have $n(A\cup B\)=n(A)+n(B)$

Real Numbers

If a number is of the form $\frac{p}{q}$ where p and q are integers and denominator $q \neq 0$, then the number is called a rational number

Set of all rational numbers is denoted by the letter Q and

$$\therefore \qquad Q = \left\{ \frac{p}{q} \mid p, q \in I \text{ and } q \neq 0 \right\}$$

Equality relation: $\frac{p}{q}$ and $\frac{r}{s}$ are any two rational numbers and

if $\frac{p}{q} = \frac{r}{s}$, then ps=qr and conversely if ps=qr then $\frac{p}{q} = \frac{r}{s}$

Order relation: $\frac{p}{q}$ and $\frac{r}{s}$ are any two rational numbers with both denominators q > 0 and s > 0 then if $\frac{p}{q} > \frac{r}{s}$, then ps > qr and conversely if ps > qr then $\frac{p}{q} > \frac{r}{s}$

Properties of rational number

if a, b, c are any rational numbers then

a+b=b+a	Commutative property
(a+b) + c = a + (b+c)	Associative property
a + 0 = 0 + a = a	Additive identity
a + (-a) = (-a) + a = 0	Additive inverse
$a \times b = b \times a$	Commutative property
$(a \times b) \times c = a \times (b \times c)$	Associative property
$a \times 1 = 1 \times a = a$	Multiplicative identity
$a \times \frac{1}{a} = \frac{1}{a} \times a = 1$	Multiplicative inverse
$a \times (b+c) = a \times b + a \times c$	Distributive property

Properties of real number

1) If a and b are any two real numbers, then only one of the following relation is true

(i) a = b (ii) a < b (iii) a > b2) If a < b and b < c then a < c3) If a < b then a + c < b + c4) Let a < b then (i) If c > 0 then ac < bc (ii) If c < 0 then ac > bc

If x is a real number absolute value of x is denoted by |x| and is define as

 $\begin{aligned} |x| &= x \text{ for } x > 0 \\ &= 0 \text{ for } x = 0 \\ &= -x \text{ for } x < 0 \text{ and if } |x| = a \text{ then } x = \pm a \end{aligned}$

Surds

A number of the form $\sqrt[n]{a}$ is said to be a surd if \sqrt{n} is a natural number and $n \neq 1$ \sqrt{a} is a positive rational number $\sqrt[n]{a}$ is an irrational number

Laws of Surd

1)
$$(\sqrt[n]{a})^{n} = a$$
 e.g $(\sqrt[4]{10})^{4} = 10$
2) $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$ e.g $\sqrt[3]{20} \cdot \sqrt[3]{4} = \sqrt[3]{80}$
3) $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$ e.g $\frac{\sqrt[7]{10}}{\sqrt[7]{19}} = \sqrt[7]{\frac{10}{19}}$
4) $\sqrt[n]{\sqrt[n]{a}} = \sqrt[m]{a} = \sqrt[n]{\sqrt[n]{a}} e.g \sqrt[3]{\sqrt[5]{72}} = \sqrt[15]{72} = \sqrt[5]{\sqrt[3]{72}}$

Forms of Surd

1) Pure surds : A surd of the form $\sqrt[n]{a}$ is called a pure surd e.g $\sqrt[3]{19}$ is pure surd

2) Mixed surds : A surd of the form $m \times \sqrt[n]{a}$ where $m \ (\pm 1)$ is a rational number, is called a mixed surd

e.g $8\sqrt[3]{27}$ is mixed surd

3) Similar Surd

⇒ The surds of the form $p\sqrt[n]{a}$ and $q\sqrt[n]{a}$, where p and q are rational numbers are called similar surds e.g. $\sqrt{4}, \sqrt[3]{4}, \frac{7}{8}\sqrt{4}$ are similar surds

Simplest form of a surd

A Surd $\sqrt[n]{a}$ is said to be in its simplest form if \checkmark The radicand *a* has no factor which is n^{th} power of a rational number \checkmark The radicand *a* is not fraction $\checkmark n$ is the least order

Comparison of surds

Suppose $\sqrt[n]{a}$ and $\sqrt[n]{b}$ are two surds of same order(n) then they can be compared by comparing there radicand (a, b) in the e.g)

i) $\sqrt[n]{a} = \sqrt[n]{b}$ if a = bii) $\sqrt[n]{a} > \sqrt[n]{b}$ if a > biii) $\sqrt[n]{a} < \sqrt[n]{b}$ if a < b

Rationalization of surds: If we multiply two surds and the product we get is a rational number, then we say each surd is a rationalizing factor of the other surd

Factorisation of algebric expression

Factorisation of an algebric expression of the form $a^3 + b^3 + c^3 - 3abc$ $= (a + b + c)(a^{2} + b^{2} + c^{2} - ab - bc - ca)$ (i) If a + b + c = 0 then $a^3 + b^3 + c^3 = 3abc$ (ii) If $a + b + c \neq 0$ and $a^3 + b^3 + c^3 - 3abc = 0$ then a = b = c

Polynomials

An algebric expression is called a polynomial if

 \checkmark It's of the form $a_0 + a_1x + a_2x^2 + \dots + a_{n-1}x^{n-1} + a_nx^n$ $\checkmark a_0, a_1, a_2 \cdots a_{n-1}, a_n$ are real numbers

 $\checkmark n$ is a non-negative interger

a polynomial in x is denoted by p(x),

If we arrange terms of polynomial such that power of x are in ascending or are in descending order, then we say polynmial is in the standard form

Degree of a polynomial: Suppose a polynomial is in x, then the highest power (index) of x is called the degree of the polynomial

Types of Polynomial

Monomial	One term	e.g $3, 10x, 12x^3$
Binomial	Two terms	e.g $4x + 12x^3$
Trinomail	Three terms	e.g $3 + 10x + 4x^2$

Zero polynomial: If all coefficient of a polynomial are zero it's called a zero polynomial e.g $0 + 0x, 0x + 0x^3$

Constant polynomial: if a polynomial $p(x) = a_0 + a_1x + a_2x^2 + \ldots + a_{n-1}x^{n-1} + a_nx^n$ is such that $a_1 = a_2 = a_3 = \dots = a_n = 0$ then P(x) is called constant polynomial i.e $p(x) = a_0 + 0 + 0 + 0 \dots = a_0$ p(x) = 12, p(x) = -2 are examples constant polynomial

Ratio and proportion

Properties of ratio $1)ma:mb = a:b = \frac{a}{m}:\frac{b}{m}$ 2) if a:b and c:d are the two given ratio then

```
\Rightarrow \text{ if } a \times d = b \times c
                                    then a: b = c: d
\Rightarrow if a \times d > b \times c
                                    then a: b > c: d
\Rightarrow if a \times d < b \times c
                                    then a: b < c: d
```

Properties of equal ratios

 \Rightarrow if $\frac{a}{b} = \frac{c}{d}$ then $\frac{b}{a} = \frac{d}{c}$ \rightarrow Invertendo $\Rightarrow \text{ if } \frac{a}{b} = \frac{c}{d} \text{ then } \frac{a}{c} = \frac{c}{c}$ $\Rightarrow \text{ if } \frac{a}{b} = \frac{c}{d} \text{ then } \frac{a}{c} = \frac{b}{d}$ $\Rightarrow \text{ if } \frac{a}{b} = \frac{c}{d} \text{ then } \frac{a+b}{b} = \frac{c+d}{d}$ $\Rightarrow \text{ if } \frac{a}{b} = \frac{c}{d} \text{ then } \frac{a-b}{b} = \frac{c-d}{d}$ $\Rightarrow \text{ if } \frac{a}{b} = \frac{c}{d} \text{ then } \frac{a+b}{a-b} = \frac{c+d}{c-d}$ \rightarrow Alternedo \rightarrow Componendo \rightarrow Dividendo \rightarrow Componendo-Divedendo

Theorem on equal ratios: if $\frac{a}{b} = \frac{c}{d} = \frac{e}{f}$ then

 $\checkmark \frac{a}{b} = \frac{a+c+e}{b+d+f}$ $\checkmark \frac{c}{d} = \frac{a+c+e}{b+d+f}$ $\checkmark \frac{e}{f} = \frac{a+c+e}{b+d+f}$ i.e each ratio = $\frac{a+c+e}{b+d+f}$

Proportion: if $\frac{a}{b} = \frac{c}{d}$ then a, b, c, d are said to be in proportion if $\frac{a}{b} = \frac{c}{d}$ then $a \times d = b \times c$

Continued proportion: if $\frac{a}{b} = \frac{b}{c}$ then a, b, c are said to be in continued proportion

we have if a, b, c are in continued proportion then

 $\frac{a}{b} = \frac{b}{c}$ i.e $b^2 = \frac{a}{a}$

 $\therefore b = \sqrt{ac}$ b is called geometric mean or mean proportional to a and c

Statistic

Mean

Mean of raw data : If x_1, x_2, \ldots, x_n are given observations all are numbers then we defined their mean as \bar{x} , and $\bar{x} =$ $\underline{x_1 + x_2 + x_n}$

Mean of ungrouped data

 $\bar{x} = \frac{f_1 x_1 + f_2 x_2 \dots + f_n x_n}{f_1 + f_2 \dots + f_n} \quad i.e \quad \bar{x} = \frac{1}{N} \sum f_i x_i \text{ where } N = \sum f_i$ Here, $x_1, x_2, \dots x_n$ are observations and $f_1, f_2, f_3 \dots f_n$ are frequencies

Median

Suppose N is is the number of observation made, and they are arranged in either ascending or in descending order of magnitudes then

1. If N is Odd then Median
$$=\left(\frac{N+1}{2}\right)^{\text{th}}$$
 term

2. if N is Even then Median
= A.M of
$$\left(\frac{N}{2}\right)^{\text{th}}$$
 and $\left(\frac{N+1}{2}\right)^{\text{th}}$ terms

Mode: The observation(s) which has a maximum number of frequency is called a mode

Percentage profit & loss

1) Profit = S.P - C.P2) Loss = C.P - S.P3) Profit percentage = $\frac{Profit}{C.P} \times 100$ 4) Loss percentage $=\frac{Loss}{CP} \times 100$

Discount Rebate & Commission

- 1. Discount = printed price \times rate of discount
- 2. Selling price = printed price discount
- 3. Percentage of discount $=\frac{\text{discount}}{\text{printed price}} \times 100$

Trigonometry

Trigonometric ratios of an acute angle

$\sin \theta$	$\frac{\text{Opposite side of angle } \theta}{\text{Hypothenuse}}$		
$\cos \theta$	$\frac{\text{Adjacent side of angle }\theta}{\text{Hypothenuse}}$		
Tan θ	$\frac{\text{Opposite side of angle }\theta}{\text{Adjacent side of angle }\theta}$		
Cosec θ	$\frac{\text{Hypotenus}}{\text{Opposite side of angle }\theta}$		
Sec θ	$\frac{\text{Hypotenus}}{\text{Adjacent side of angle }\theta}$		
$\operatorname{Cot}\theta$	$\frac{\text{Adjacent side of angle }\theta}{\text{Opposite side of angle }\theta}$		

Relationship between the trignometric ratios

sinAcosecA=1	$\sin A = \frac{1}{\cos e c A}$	$cosecA = \frac{1}{sinA}$
$\cos A \sec A = 1$	$secA = \frac{1}{cosA}$	$\cos A = \frac{1}{\sec A}$
tanAcotA=1	$\tan A = \frac{1}{\cot A}$	$\cot A = \frac{1}{\tan A}$
$\tan A = \frac{\sin A}{\cos A}$	$\cot A = \frac{\cos A}{\sin A}$	

Ratios of angle

M. of $\angle^s \rightarrow$	0°	30°	45°	60°	90°
\downarrow Ratios of \angle^s					
$\sin \theta$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
$\tan \theta$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	ND
$\cos \theta$	ND	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1
$\sec \theta$	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	ND
$\cot \theta$	ND	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0

Perimeters(P) and Areas(A) of some plane fig's

- 1. Triangle: a, b, c are sides of \triangle , h is the ht
 - (a) Perimeter = a + b + c
 - (b) Area $=\frac{1}{2} \times base \times height$
 - (c) By Heron's formula Area= $\sqrt{(s-a)(s-b)(s-c)}$ here s= $\frac{a+b+c}{2}$
- 2. Equilateral \triangle : Each side=a
 - (a) Perimeter = a + a + a = 3a
 - (b) Area $=\frac{\sqrt{3}}{4} \times a^2$
- 3. Square: Each side=a
 - (a) Perimeter = a + a + a + a = 4a
 - (b) Area = $a \times a = a^2$
- 4. Rectangle: l is length & b is breadth
 - (a) Perimeter = $2 \times (l+b)$
 - (b) Area=length \times breadth i.e $l \times b$
- 5. Parallelogram:a,b are sides of $||^m$ and h is ht.
 - (a) Perimeter = $2 \times (a+b)$
 - (b) Area=base × height i.e $b \times h$
- 6. Trapezium: a, b, c, d are sides, h is height, here sides a & b are opp. \parallel sides
 - (a) Perimeter = a + b + c + d
 - (b) Area= $\frac{1}{2} \times (\text{sum of the lengths of } \parallel \text{sides}) \times (\text{height})$ = $\frac{1}{2}(a+b) \times h$
- 7. Rhombus: l is the measure of all sides and d_1, d_2 are the diagonals.
 - (a) Perimeter = $4 \times l$
 - (b) Area= $\frac{1}{2} \times ($ products of the diagonals)= $\frac{1}{2}(d_1 \times d_2)$
- 8. circle: r is the radius.
 - (a) Perimter = Circumference = $2\pi r$
 - (b) Area = πr^2