Linear Equations in Two Variables

The general form of a linear equation in two variables x and y is ax + by + c = 0, and here $a \neq 0, b \neq 0$

Solution of Linear equations in two variables by the method of Determinants

Let us consider two equations $ax + by = e \dots (1)$ $cx + dy = f \dots (2)$ then

$$x = \frac{D_x}{D} \text{ and } y = \frac{D_y}{D}$$

Here,
$$D = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = a \times d - b \times c$$

$$D_x = \begin{vmatrix} e & b \\ f & d \end{vmatrix} = e \times d - b \times f$$
$$D_y = \begin{vmatrix} a & e \\ c & f \end{vmatrix} = a \times f - e \times c$$

HCF and LCM of Polynomials

An algebric expression of the type $a_0 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1} + a_nx^n$ is called a polynomial if (i) $a_0, a_1, a_2 \cdots a_{n-1}, a_n$ are real numbers (ii) n is an integer which ≥ 0

Test for divisiblity

Test for (x-1):(x-1) is a factor of polynomial in x if sum (additon) of all the coefficient of the polynomial is **zero**

Test for (x + 1):(x + 1) is a factor of polynomial in x if sum (additon) of all the coefficient in **even** power of x **is equal** to sum (additon) of all the coefficient in **odd** power of x

Relationship between HCF & LCM if there are two polynomial say p(x) and q(x) then LCM of { p(x) and q(x)} × HCF of { p(x) and q(x)} = $p(x) \times q(x)$

Rational Algebraic Expressions

we know that a number of the form $\frac{m}{n}$ where $n \neq 0$ is called a **rational number**.

 \therefore An expression of the form $\frac{p(x)}{qx}$ where p(x), q(x)are polynomials and $q(x) \neq 0$, is called **rational** expression or rational algebraic expression

 \Rightarrow if p(x), q(x) and r(x) are the polynomial and $q(x) \neq 0, r(x) \neq 0$ then

1.
$$\frac{p(x) \times r(x)}{q(x) \times r(x)} = \frac{p(x)}{q(x)}$$

2.
$$-\left(\frac{p(x)}{q(x)}\right) = -\frac{p(x)}{q(x)} = \frac{-p(x)}{q(x)} = \frac{p(x)}{-q(x)}$$

Addition & subtraction of two rational expressions (Denominator are equal)

Let $\frac{p(x)}{q(x)}$ & $\frac{r(x)}{q(x)}$ be any two rational expression then:

1.
$$\frac{p(x)}{q(x)} + \frac{r(x)}{q(x)} = \frac{p(x) + r(x)}{q(x)}$$

2. $\frac{p(x)}{q(x)} - \frac{r(x)}{q(x)} = \frac{p(x) - r(x)}{q(x)}$

Let
$$\frac{p(x)}{q(x)}$$
 & $\frac{r(x)}{s(x)}$ be any two rational expression then:

1.
$$\frac{p(x)}{q(x)} + \frac{r(x)}{s(x)} = \frac{p(x) \times s(x) + r(x) \times q(x)}{q(x) \times s(x)}$$

2. $\frac{p(x)}{q(x)} - \frac{r(x)}{s(x)} = \frac{p(x) \times s(x) - r(x) \times q(x)}{q(x) \times s(x)}$

Multiplication of Rational Expressions If $\frac{a}{b}$ and $\frac{c}{d}$ are two rational numbers, then we we know that their product is given by $\frac{a}{d} \times \frac{c}{d} = \frac{a \times c}{d}$

If $\frac{b}{b}$ and $\frac{d}{d}$ are two rational numbers, then we we know that their product is given by $\frac{a}{b} \times \frac{c}{d} = \frac{a \times c}{b \times d}$ similarly, if $\frac{p(x)}{q(x)} & \frac{r(x)}{s(x)}$ are the two rational expression there product is given by $\Rightarrow \frac{p(x)}{q(x)} \times \frac{r(x)}{s(x)} = \frac{p(x) \times r(x)}{q(x) \times s(x)}$

Division of Rational Expression

Let $\frac{p(x)}{q(x)}$ & $\frac{r(x)}{s(x)}$ be the two rational expression such that $r(x) \neq is$ non-zero rational expression then we have

$$\Rightarrow \frac{p(x)}{q(x)} \div \frac{r(x)}{s(x)} = \frac{p(x)}{q(x)} \times \frac{s(x)}{r(x)} = \frac{p(x) \times s(x)}{q(x) \times r(x)}$$

Quadratic Equations

The general form of a quadratic equation is $ax^2 + bx + c = 0$, where a,b,c are real number and

$a \neq 0$

sol. by perfect square method

⇒Make sure the coefficient of variable with index 2 is 1 (eg. $5x^2 - 4x - 2 = 0$, here the coefficient is 5 for x^2 hence first we shall divide both side by 5) ⇒Find the 3^{rd} term with formula

Third term= $\left(\frac{1}{2} \times \text{coefficient of } x\right)^2$ \Rightarrow Add third term on both the side

sol. by formula method

Let $ax^2 + bx + c = 0$ be a quadratic equation, where where a,b,c are real numbers and $a \neq 0$ then solution by formula method is given by

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Case1: $\Rightarrow b^2 - 4ac = 0$ i.e $b^2 = 4ac$ $x = -\frac{b}{2a}, x = -\frac{b}{2a} \rightarrow \text{both roots are equal}$ Case2: $\Rightarrow b^2 - 4ac > 0$ i.e $b^2 > 4ac$ then the equation has two distinct root

 $x = \frac{-b + \sqrt{b^2 - 4ac}}{2a}, x = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$ Case 3: $\Rightarrow b^2 - 4ac < 0$ then $\sqrt{b^2 - 4ac}$ is not real

Case $3 \Rightarrow b^2 - 4ac < 0$ then $\sqrt{b^2 - 4ac}$ is not real number and hence quadractic equation cannot have any real roots

Imp. Result

1.
$$x^{2} + \frac{1}{x^{2}} = \left(x + \frac{1}{x}\right)^{2} - 2$$

2. $x^{2} + \frac{1}{x^{2}} = \left(x - \frac{1}{x}\right)^{2} + 2$

Arthmetic Progressions(AP)

The general form of AP is

 $t, t+d, t+2d, t+3d, \ldots$, here **t** is the first term and **d** is common difference,

The AP with first term 100 and common difference 50 is

 $100, 150, 200, 250, 300 \dots$

nth (or the general) term of an AP, nth of an arthemetic progression t, t + d, t + 2d, t + 3d, ... is given by

 $t_n = t + (n-1)d \quad , \text{ here }$

 $\checkmark t_n$ is the nth term

 $\checkmark t$ is the first term

 \checkmark n is the number of terms in an AP

 $\checkmark d$ is the common difference between the successive terms of an AP

Sum of the first n terms of an AP

Let $a, a+d, a+2d, a+3d, \ldots$ be an AP with total *n* number of terms *a* denote first term, t_n denote last term of AP d denotes the common diff. Let us denote sum upto n terms by S_n , we have $\Rightarrow S_n = \frac{n}{2} (a+t_n)$ $\Rightarrow t_n = a + (n-1)d$ $\therefore \Rightarrow S_n = \frac{n}{2} [2a + (n-1)d]$

Probability

Probability of an event

probability of an even A, written as P(A), is defined as

 $\checkmark P(A) = \frac{\text{Number of outcomes favourable to A}}{\text{Total number of possible outcomes}}$

 \checkmark probability of an impossible event is 0

 \checkmark probability of a sure event is 1. Probability of any event will lie between 0 and 1, In general for any event A,we have

$$\Rightarrow P(A)=1-P(A')$$
$$\Rightarrow P(A)+P(A')=1$$

 $\Rightarrow P(A')=1-P(A)$

Here P(A') denotes probability of not happening of an event A

Statistics

Mean of Raw Data

Mean of the values $x_1, x_2, x_3 \dots, x_n$ is denoted by \bar{x} and is given by

$$\bar{x} = \frac{x_1, x_2, x_3 \dots, x_n}{n} = \frac{1}{n} \sum_{i=1}^n x_i$$

Assumed Mean Method for Calculating the Mean

A=an arbitary constant(usually A is chosen some where in the middle part of the given value) A is also called **assumed mean**

 d_i =The reduced value, $d_i = x_i - A$ and is called **deviation** of x_i from A

$$\bar{d} = \frac{\sum_{i=1}^{n} f_i d_i}{\sum_{i=1}^{n} f_i} \qquad \& \quad \mathbf{Mean} = \bar{x} = A + \bar{d}$$

Mean of Grouped Data

1. Direct method
$$\bar{x} = \frac{\sum_{i=1}^{n} f_i x_i}{\sum_{i=1}^{n} f_i}$$

- 2. Assumed mean method $\bar{x} = A + \bar{d}$
- 3. Step-deviation method $\bar{x} = A + h.\bar{d}$ (*h* is the width of the class intervals)

Remember
$$\bar{d}$$
 is calculated as $\bar{d} = \frac{\sum_{i=1}^{n} f_i d_i}{\sum_{i=1}^{n} f_i}$

Median

Formula for computing Median from grouped data

Median=
$$L + \frac{\frac{1}{2} - c.f.}{f} \times h$$
, where

L =Lower boundary of a median class

N =Total frequency

 $c.f{=}c$ umulative f requency of the class preceding the median class

f = f requency of the median class

h=Width of the median class

Mode

Formula for computing Mode from grouped data

Mode =
$$L + \left(\frac{f_m - f_1}{2f_m - f_1 - f_2}\right) \times h$$

 L =Lower boundary of a modal class

 f_m =Frequency of the modal class f_1 =Frequency of the class coming before the modal class

 f_2 =Frequency fo the class coming after the modal class h=Width of the modal class

Instalments

 $\Rightarrow x_n = P_n \left(1 + \frac{R}{100}\right)^n$ $P_n = \text{Amount of } n_{th} \text{ instalment.}$ P = Amount borrowed, cash price. R = Rate of interest A = Principle + interest = Amount due x = Amount of installment

Similarity

Two \bigtriangleup 's are said to be similar if

- 1. Their corresponding angles are equal
- 2. Their corresponding sides are in the same ratio (*i.e. sides are proportional*)

Ratio of area of $\triangle's$

Let A_1 and A_2 be the area, b_1, b_2 be the bases and h_1, h_2 be the heights of any two $\triangle' s$ Then the ratio of there area is given as

$$1. \ \frac{A_1}{A_2} = \frac{b_1 \times h_1}{b_2 \times h_2}$$

2.
$$\frac{A_1}{A_2} = \frac{b_1}{b_2}$$
, if heights of two $\triangle's$ are equal

3.
$$\frac{A_1}{A_2} = \frac{h_1}{h_2}$$
, if bases of two $\triangle' s$ are equal

Trigonometry

Trigonometric ratios of an acute angle

$\sin \theta$	$\frac{\text{Opposite side of angle }\theta}{\text{Hypothenuse}}$				
$\cos \theta$	$\frac{\text{Adjacent side of angle }\theta}{\text{Hypothenuse}}$				
Tan θ	$\frac{\text{Opposite side of angle }\theta}{\text{Adjacent side of angle }\theta}$				
Cosec θ	$\frac{\text{Hypotenus}}{\text{Opposite side of angle }\theta}$				
Sec θ	$\frac{\text{Hypotenus}}{\text{Adjacent side of angle }\theta}$				
$\cot \theta$	$\frac{\text{Adjacent side of angle }\theta}{\text{Opposite side of angle }\theta}$				

Relationship between the trignometric ratios

Compiled by metric, for soft copy mail me at metricspace@gmail.com

sinAcosecA=1	$sinA = \frac{1}{cosecA}$	$cosecA = \frac{1}{sinA}$
cosAsecA=1	$secA = \frac{1}{cosA}$	$\cos A = \frac{1}{\sec A}$
tanAcotA=1	$\tan A = \frac{1}{\cot A}$	$\cot A = \frac{1}{\tan A}$
$\tan A = \frac{\sin A}{\cos A}$	$\cot A = \frac{\cos A}{\sin A}$	

Ratios of angle

M. of $\angle^s \rightarrow$	0°	30°	45°	60°	90°
\downarrow Ratios of \angle^s					
$\sin \theta$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$\cos heta$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
$\tan \theta$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	ND
$\cos e \theta$	ND	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1
$\sec \theta$	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	ND
$\cot \theta$	ND	$\sqrt{3}$	1	$\frac{1}{\sqrt{2}}$	0

Trigonometric Identities

- 1. $sin^2\theta + cos^2\theta = 1$
- 2. $1 + tan^2\theta = sec^2\theta$
- 3. $1 + \cot^2 \theta = \csc^2 \theta$

Trigonometric Ratios of Complementary Angles

- 1. $sin(90^\circ \theta) = cos \ \theta$
- 2. $cos(90^{\circ} \theta) = sin \ \theta$
- 3. $tan(90^{\circ} \theta) = \cot \theta$
- 4. $\cot(90^\circ \theta) = \tan \theta$
- 5. $cosec(90^{\circ} \theta) = sec \ \theta$
- 6. $sec(90^{\circ} \theta) = cosec \ \theta$

Surface Areas & Volumes

- 1. Cuboid *l*:length, *b*:breadth, *h*:height
 - (a) Curved Surface Area=2h(l+b)
 - (b) Total Surface Area=2(lb + bh + hl)
 - (c) Volume=lbh
- 2. Cube a: side of the cube
 - (a) Curved Surface Area= $4a^2$
 - (b) Total Surface Area= $6a^2$
 - (c) Volume= a^3

3. **Right circular cylinder** *r*:radius of the base, *h*:height

- (a) Curved Surface Area= $2\pi rh$
- (b) Total Surface Area= $2\pi r(h+r)$
- (c) Volume= $\pi r^2 h$
- 4. **Cone** *r*:radius of the base *h*:height, *l*:slant height
 - (a) Curved Surface Area= πrl
 - (b) Total Surface Area= $2\pi r(l+r)$
 - (c) Volume= $\frac{1}{3}\pi r^2 h$
 - (d) By pythagoras theorem: $l^2 = h^2 + r^2$
- 5. Sphere *r*:radius
 - (a) Surface Area= $4\pi r^2$
 - (b) Volume= $\frac{4}{3}\pi r^3$
- 6. Hemisphere r:radius
 - (a) Surface Area= $2\pi r^2$
 - (b) Volume= $\frac{2}{3}\pi r^3$

Co-ordinate Geometry

Distance formula

Let $P(x_1, y_1), Q(x_2, y_2)$ be any two points **Distance formula=** $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ The distance of P(x, y) from origin O(0, 0) is given by $OP = \sqrt{(x^2 + y^2)}$

Section formula for internal division

coordinates of the point P(x, y) which divides a linesegment joining the point $A(x_1, y_1)$, $B(x_2, y_2)$ internally in a given ratio m: n are given by

$$P \equiv \left(\frac{mx_2 + nx_1}{m+n} \ , \ \frac{my_2 + ny_1}{m+n}\right)$$

Section formula for external division

Coordinates of the point P(x, y) dividing the seg.joining points $A(x_1, y_1), B(x_2, y_2)$ **externally** are given by $P \equiv \left(\frac{mx_2 - nx_1}{mx_2 - ny_1}, \frac{my_2 - ny_1}{mx_2 - ny_1}\right)$

$$\left(\frac{1}{m-n}, \frac{1}{m-n}\right)$$

Mid-point formula

Point P(x,y) is the midpoint of segment joining points $A(x_1,y_1), B(x_2,y_2)$ its coordinates are given by $P \equiv \left(\begin{array}{c} x_1 + x_2 \\ y_1 + y_2 \end{array} \right)$

$$\begin{pmatrix} 2 & 2 \\ Coordinates of Centroid \end{pmatrix}$$

If $A(x_1, y_1), B(x_2, y_2), C(x_3, y_3)$ are the vertices of $\triangle ABC$, G(x, y) is the centroid then

$$G \equiv \left(\frac{x_1 + x_2 + x_3}{3} , \frac{y_1 + y_2 + y_3}{3}\right)$$