Linear Equations in Two Variables

The general form of a linear equation in two variables x and y is ax + by + c = 0, here $a \neq 0, b \neq 0$

Solution of such equations by Determinants method

$$ax + by = e$$

$$cx + dy = f$$
(i) $\mathbf{x} = \frac{D_x}{D}$, (ii) $\mathbf{y} = \frac{D_y}{D}$ where
1. $D = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = a \times d - b \times c$
2. $D_x = \begin{vmatrix} e & b \\ f & d \end{vmatrix} = e \times d - b \times f$
3. $D_y = \begin{vmatrix} a & e \\ c & f \end{vmatrix} = a \times f - e \times c$

HCF and LCM of Polynomials

An algebraic expression of the type $a_0 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1} + a_nx^n$ is called a polynomial if

- (i) $a_0, a_1, a_2 \cdots a_{n-1}, a_n$ are real numbers.
- (ii) *n* is an integer which ≥ 0 .

Test for divisibility

1. Test for (x - 1):

(x - 1) is a factor of polynomial in x if sum (addition) of all the coefficient of the polynomial is **zero**

2. Test for (x + 1):
 (x + 1) is a factor of polynomial in x if sum (addition) of all the coefficient in even power of x is equal to sum (addition) of all the coefficient in odd power of x

Relationship between HCF & LCM

If there are two polynomial say p(x) and q(x) then

LCM of { p(x) and q(x)} × HCF of { p(x) and q(x)} = $p(x) \times q(x)$

Rational Algebraic Expressions

We know that a number of the form $\frac{m}{n}$ where $n \neq 0$ is called a **rational number**. An expression of the form $\frac{p(x)}{qx}$ where p(x), q(x) are polynomials and $q(x) \neq 0$, is called **rational expression** or **rational algebraic expression**

Suppose p(x), q(x) and r(x) are the polynomials and $q(x) \neq 0$, $r(x) \neq 0$ then

(i)
$$\frac{p(x) \times r(x)}{q(x) \times r(x)} = \frac{p(x)}{q(x)}$$

(ii)
$$-\left(\frac{p(x)}{q(x)}\right) = -\frac{p(x)}{q(x)} = \frac{-p(x)}{q(x)} = \frac{p(x)}{-q(x)}$$

Addition & subtraction of two rational expressions (When denominators are equal)

Let $\frac{p(x)}{q(x)} \otimes \frac{r(x)}{q(x)}$ be any two rational expressions then: 1. $\frac{p(x)}{q(x)} + \frac{r(x)}{q(x)} = \frac{p(x) + r(x)}{q(x)}$ 2. $\frac{p(x)}{q(x)} - \frac{r(x)}{q(x)} = \frac{p(x) - r(x)}{q(x)}$

Addition & subtraction of two rational expressions (When denominators are unequal)

Let
$$\frac{p(x)}{q(x)} \otimes \frac{r(x)}{s(x)}$$
 be any two rational expressions then:
1. $\frac{p(x)}{q(x)} + \frac{r(x)}{s(x)} = \frac{p(x) \times s(x) + r(x) \times q(x)}{q(x) \times s(x)}$
2. $\frac{p(x)}{q(x)} - \frac{r(x)}{s(x)} = \frac{p(x) \times s(x) - r(x) \times q(x)}{q(x) \times s(x)}$

Multiplication of Rational Expressions

If $\frac{a}{b}$ and $\frac{c}{d}$ are two rational numbers, then we we know that their product is given by $\frac{a}{b} \times \frac{c}{d} = \frac{a \times c}{b \times d}$ similarly, if $\frac{p(x)}{q(x)}$ and $\frac{r(x)}{s(x)}$ are the two rational expression there product is given by

$$\frac{p(x)}{q(x)} \times \frac{r(x)}{s(x)} = \frac{p(x) \times r(x)}{q(x) \times s(x)}$$

Division of Rational Expression

Let $\frac{p(x)}{q(x)}$, $\frac{r(x)}{s(x)}$ be the two rational expressions such that $r(x) \neq is$ non-zero rational expression then we have

$$\frac{p(x)}{q(x)} \div \frac{r(x)}{s(x)} = \frac{p(x)}{q(x)} \times \frac{s(x)}{r(x)} = \frac{p(x) \times s(x)}{q(x) \times r(x)}$$

Quadratic Equations

The general form of a quadratic equation is $ax^2 + bx + c = 0$, where a , b , c are real number and $a \neq 0$

Solution by perfect square method

- 1. Make sure the coefficient of variable with index 2 is 1 (eg. $5x^2 4x 2 = 0$, here the coefficient is 5 for x^2 hence first we shall divide both side by 5)
- 2. Find the 3^{*rd*} term with formula **Third term**= $(\frac{1}{2} \times \text{coefficient of } x)^2$
- 3. Add third term on both the side

Solution by formula method

Let $ax^2 + bx + c = 0$ be a quadratic equation, where where a, b, c are real numbers and $a \neq 0$ then solution by formula method is given by

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Case1: $b^2 - 4ac = 0$ i.e $b^2 = 4ac$

$$x = -\frac{b}{2a}$$
, $x = -\frac{b}{2a}$, both the roots are equal

Case2: $b^2 - 4ac > 0$ i.e $b^2 > 4ac$ then the equation has two distinct roots

$$x = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
 , $x = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$

Case3: $b^2 - 4ac < 0$ then $\sqrt{b^2 - 4ac}$ is not a real number and hence quadratic equation cannot have any real roots

Imp. Result

1.
$$x^{2} + \frac{1}{x^{2}} = \left(x + \frac{1}{x}\right)^{2} - 2$$

2. $x^{2} + \frac{1}{x^{2}} = \left(x - \frac{1}{x}\right)^{2} + 2$

Arithmetic Progressions(AP)

General form of the AP

$$t, t+d, t+2d, t+3d,..$$

(i) *t* is the *first term* (ii) *d* is *common difference* n^{th} term of an AP *t*, t + d, t + 2d, t + 3d, ... is given by

$$t_n = t + (n-1)d$$

- 1) t_n is n^{th} term
- 2) *t* is the first term
- 3) n is the number of terms in an AP
- 4) d is the common difference between the successive terms of an AP

Sum of the first n terms of an AP

Let a, a + d, a + 2d, a + 3d, ... be an AP with n number of terms a denote first term. t_n denote last term of AP. d denotes the common difference. Let us denote sum up to n terms by S_n , we have

1.
$$S_n = \frac{n}{2} (a + t_n)$$

2. $t_n = a + (n - 1)d$
 $S_n = \frac{n}{2} [2a + (n - 1)d]$

Probability

Probability of an event

probability of an event *A*, written as P(A), is defined as $P(A) = \frac{\text{Number of outcomes favorable to } A}{\text{Total number of possible outcomes}}$ probability of an impossible event is 0 probability of a sure event is 1. Probability of any event will lie between 0 and 1.

In general for any event A, we have

1.
$$P(A) = 1 - P(A')$$

2.
$$P(A) + P(A') = 1$$

3.
$$P(A) = 1 - P(A)$$

Note: P(A') denotes probability of *not* happening of an event A

Statistics

Mean of Raw Data

Mean of the values $x_1, x_2, x_3 \dots, x_n$ is denoted by \bar{x} and is given by

$$\bar{x} = \frac{x_1 + x_2 + x_3 \dots + x_n}{n} = \frac{1}{n} \sum_{i=1}^n x_i$$

Assumed Mean Method for Calculating the Mean

A is an arbitrary constant(usually *A* is chosen some where in the middle part of the given value) *A* is also called **assumed mean**. d_i =The reduced value, $d_i = x_i - A$ and is called **deviation** of x_i from *A*

$$ar{d} = rac{\displaystyle\sum_{i=1}^n f_i d_i}{\displaystyle\sum_{i=1}^n f_i}$$
 & Mean $= ar{x} = A + ar{d}$

Mean of Grouped Data

1. Direct method
$$\bar{x} = \frac{\sum_{i=1}^{n} f_i x_i}{\sum_{i=1}^{n} f_i}$$

- 2. Assumed mean method $\bar{x} = A + \bar{d}$
- 3. Step-deviation method $\bar{x} = A + h.\bar{d}$ (*h* is the width of the class intervals)

Median

Formula for computing Median from grouped data

$$\mathbf{Median} = L + \frac{\frac{N}{2} - c.f.}{f} \times h$$

- 1) *L* is lower boundary of a median class
- 2) N is total frequency

- 3) c.f is cumulative frequency of the class preceding the median class
- 4) f is frequency of the median class
- 5) h is width of the median class

Mode

Formula for computing Mode from grouped data

$$\mathbf{Mode} = L + \left(\frac{f_m - f_1}{2f_m - f_1 - f_2}\right) \times h$$

- 1) *L* is lower boundary of a modal class
- 2) f_m is frequency of the modal class
- 3) f_1 is frequency of the class coming before the modal class
- 4) f_2 is frequency of the class coming after the modal class
- 5) h is width of the modal class

Similarity

Ratio of the areas of two triangles

Let A_1 and A_2 be the areas, b_1, b_2 be the bases and h_1, h_2 be the heights of any two $\triangle's$ Then the ratio of there area is given as

1.
$$\frac{A_1}{A_2} = \frac{b_1 \times h_1}{b_2 \times h_2}$$

2. $\frac{A_1}{A_2} = \frac{b_1}{b_2}$, if heights of two $\triangle's$ are equal

3.
$$\frac{A_1}{A_2} = \frac{h_1}{h_2}$$
, if bases of two $\triangle's$ are equal

Trigonometry

Trigonometric ratios of an acute angle

sin $ heta$	$\frac{\text{opposite side of the angle }\theta}{\text{hypotenuse}}$	$\csc \theta$	$\frac{\text{hypotenuse}}{\text{opposite side of the angle }\theta}$	
$\cos \theta$	$\frac{\text{adjacent side of the angle }\theta}{\text{hypotenuse}}$	$\sec \theta$	hypotenuse adjacent side of the angle θ	
tan θ	$\frac{\text{opposite side of the angle }\theta}{\text{adjacent side of the angle }\theta}$	$\cot \theta$	$\frac{\text{adjacent side of the angle }\theta}{\text{opposite side of the angle }\theta}$	

M. of $\angle^s \rightarrow$	0°	30°	45°	60°	90°
\downarrow Ratios of \angle^s					
$\sin heta$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
$\tan \theta$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	ND
$\csc \theta$	ND	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1
$\sec \theta$	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	ND
$\cot \theta$	ND	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0

Trigonometric Identities

- 1. $\sin^2 \theta + \cos^2 \theta = 1$
- 2. $1 + \tan^2 \theta = \sec^2 \theta$
- 3. $1 + \cot^2 \theta = \csc^2 \theta$

Trigonometric Ratios of Complementary Angles

- 1. $\sin(90^\circ \theta) = \cos\theta$
- 2. $\cos(90^\circ \theta) = \sin \theta$
- 3. $\tan(90^\circ \theta) = \cot \theta$
- 4. $\cot(90^\circ \theta) = \tan \theta$
- 5. $\operatorname{cosec}(90^{\circ} \theta) = \sec \theta$
- 6. $\sec(90^\circ \theta) = \csc \theta$

Surface Areas & Volumes

- 1. **Cuboid** l is the length, b is the breadth, h is the height
 - (a) Curved Surface Area = 2h(l+b)
 - (b) Total Surface Area = 2(lb + bh + hl)
 - (c) Volume = lbh
- 2. **Cube** *a* is measure the side of the cube
 - (a) Curved Surface Area = $4a^2$
 - (b) Total Surface Area = $6a^2$
 - (c) Volume = a^3
- 3. **Right circular cylinder** r is radius of the base, h is the height
 - (a) Curved Surface Area = $2\pi rh$
 - (b) Total Surface Area = $2\pi r(h+r)$
 - (c) Volume = $\pi r^2 h$
- 4. **Cone** r is radius of the base, h is the height, l is the slant height
 - (a) Curved Surface Area = πrl
 - (b) Total Surface Area = $2\pi r(l+r)$
 - (c) Volume = $\frac{1}{3}\pi r^2 h$
 - (d) By Pythagoras theorem $l^2 = h^2 + r^2$
- 5. **Sphere** r is the radius
 - (a) Surface Area = $4\pi r^2$
 - (b) Volume = $\frac{4}{3}\pi r^3$
- 6. **Hemisphere** r is the radius
 - (a) Surface Area = $2\pi r^2$
 - (b) Volume = $\frac{2}{3}\pi r^{3}$

Coordinate Geometry

1. Distance between any two points $P(x_1, y_1)$ and $Q(x_2, y_2)$

$$PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

2. Distance between a point P(x, y) and origin O(0, 0)

$$PO = \sqrt{(x-0)^2 + (y-0)^2} = \sqrt{x^2 + y^2}$$

3. Coordinates of point P, dividing the line-segment joining the points $A(x_1, y_1)$ and $B(x_2, y_2)$ *internally* in the ratio *m*: *n* are given by *section formula*

$$P \equiv \left(\frac{mx_2 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n}\right) \tag{1}$$

Special Case

(a) The mid-point of the line-segment joining the points $A(x_1, y_1)$ and $B(x_2, y_2)$ divides the line-segment in the ratio 1: 1. Hence, putting m = 1 and n = 1 in equation (??)

$$P \equiv \left(\frac{x_1 + x_2}{m + n}, \frac{y_1 + y_2}{m + n}\right) \tag{2}$$

4. Coordinates of point P, dividing the line-segment joining the points $A(x_1, y_1)$ and $B(x_2, y_2)$ *externally* in the ratio m: n are given by

$$P \equiv \left(\frac{mx_2 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n}\right)$$

5. $A(x_1, y_1), B(x_2, y_2)$ and $C(x_3, y_3)$ are the coordinates of the vertices of a $\triangle ABC$ and G(x, y) is the centroid of the triangle

$$G \equiv \left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right)$$