Indices

(1)
$$a^m \times a^n = a^{m+n}$$

eg. $10^3 \times 10^2 = 10^{3+2} = 10^5$

(2)
$$a^m \div a^n = a^{m-n}$$
 ; $m > n$, $a \ne 0$ eg. $8^4 \div 8^2 = 8^{4-2} = 8^2$

$$(3) (a^m)^n = a^{m \times n}$$

eg.
$$(6^4)^2 = 6^{4 \times 2}$$

(4)
$$(a \times b)^m = a^m \times b^m$$

eg. $(5 \times 3)^6 = 5^6 \times 3^6$

$$eg. (5 \times 3)^6 = 5^6 \times 3^6$$

(5)
$$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^n}$$
; $b \neq 0$
eg. $\left(\frac{5}{4}\right)^8 = \frac{5^8}{4^8}$

$$eg. \quad \left(\frac{5}{4}\right)^8 = \frac{5^8}{4^8}$$

(6)
$$a^0 = 1$$
 $eg.7^0 = 1$

(7)
$$a^{-m} = \frac{1}{a^m}$$
 $eg.5^{-3} = \frac{1}{5^3}$

Area of Triangle

To find the area of triangle, given the base and height $=\frac{1}{2} \times Base \times Height$

To find the area of triangle when the length of all its three sides are given

Area of a triangle = $\sqrt{s(s-a)(s-b)(s-c)}$

In the above formula *a*, *b*, *c* are the sides of a triangle and s is

 $s = \frac{1}{2}(a+b+c)$ the semi-perimeter of triangle.

Identities-Expansion, Factors

$$(1) (a+b)^2 = a^2 + 2ab + b^2$$

(2)
$$(a-b)^2 = a^2 - 2ab + b^2$$

(3)
$$(a+b)(a-b) = a^2 - b^2$$

(4)
$$(x + a)(x + b) = (x + a) \times x + (x + a) \times b$$

= $x^2 + ax + bx + ab$
= $x^2 + (a + b)x + ab$

(5)
$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

(6)
$$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$

$$(7) (a^3 + b^3) = (a+b) (a^2 - ab + b^2)$$

(8)
$$(a^3 - b^3) = (a - b) (a^2 + ab + b^2)$$

Arc of a Circle

Circumference of the circle

(1) $C = 2\pi r$ i.e $2 \times \pi \times r$

Formula (1) is used to find the circumference when radius is

(2) $C = \pi d$ i.e $\pi \times d$

Formula (2) is used find the circumference when diameter is

In the above formulas value of π can be taken as $\frac{22}{7}$, if it's not given

Length of an Arc

Length of an arc = $\frac{\theta}{360} \times 2\pi r$

 θ is the angular measure and r is the radius of the circle

Area of a Circle

Area of a Circle = $\pi \times r^2$ *i.e.* $\pi \times r \times r$ Here r is the radius of the circle

Area of the sector of circle

Area of the sector of circle = $\frac{\theta}{360} \times \pi r^2$

Here θ is the angular measure of the arc and r is the radius

Compound Interest

$$I = \frac{P \times N \times R}{100}$$

I = Simple Interest

P = Principal

N =Number of years

R = Rate of Interest

A = P + I; A is the Amount and it includes Principal and Interest accrued

Amount(*A*) by compound interest

= Principal
$$\left(1 + \frac{Rate}{100}\right)^{Period}$$

i.e $(A) = P\left(1 + \frac{R}{100}\right)^{N}$

Volume and Surface Area

Cylinder

Volume of a Cylinder = $\pi r^2 h$ i.e $\pi \times r \times r \times h$ Curved Surface area of a cylinder

i.e $2 \times \pi \times r \times h$

Total surface area of a cylinder

 $=2\pi r(h+r)$ *i.e* $2 \times \pi \times r \times (h+r)$

In the formula r is the radius of the base of a cylinder and his the height

Cone

Volume of the cone = $\frac{1}{3} \times \pi r^2 h$

Curved Surface Area of the cone = πrl

Total Surface Area of the cone = $\pi r (l + r)$

In the formula *r* is radius of the base of the cone and *h* is the height and *l* is the slant height

if any two l, r, h are given and you need to find the third one, then you use the formula

$$l^2 = h^2 + r^2$$

Sphere

Volume of the sphere = $\frac{4}{3} \times \pi r^3$

Surface area of the sphere = $4\pi r^2$ r is the radius of the sphere

Sets

Complement of set

- 1) For a set A if A' is it's complement then (A')' = A
- 2) If U is an universal set and U' is its complement then $U' = \phi$
- 3) if ϕ denotes and empty set then $\phi' = U$ where ϕ' is complement of ϕ

Properties of union of sets

Here A and B are two subsets of universal set U then

- 1) $A \cup B = B \cup A$
- 2) If $A \subseteq B$ then $A \cup B = B$
- 3) If $A \subseteq A \cup B$
- 4) $A \cup A' = U$
- 5) $A \cup A = A$
- 6) $A \cup \phi = A$

Properties of intersection of sets

- 1) $A \cap B = B \cap A$
- 2) If $A \subseteq B$ then $A \cap B = A$
- 3) $A \cap B \subseteq A$ and $A \cap B \subseteq B$
- 4) $A \cap A' = \phi$
- 5) $A \cap A = A$
- 6) A $\cap \phi = \phi$

Number of elements in a set

Number of element in the set A is denoted by n(A) we

$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$

if set A and B are disjoints then $n(A \cap B) = 0$ and we have $n(A \cup B) = n(A) + n(B)$

Real Numbers

If a number is of the form $\frac{p}{q}$ where p and q are integers and denominator $q \neq 0$, then the number is called a rational number

Set of all rational numbers is denoted by the letter Q and

$$\therefore \qquad Q = \left\{ \frac{p}{q} \mid p, q \in I \text{ and } q \neq 0 \right\}$$

Equality relation: $\frac{p}{q}$ and $\frac{r}{s}$ are any two rational num-

if $\frac{p}{q}=\frac{r}{s}$, then ps=qr and conversely if ps=qr then $\frac{p}{q}=\frac{r}{s}$

Order relation: $\frac{p}{q}$ and $\frac{r}{s}$ are any two rational numbers with both denominators q > 0 and s > 0 then

if $\frac{p}{a} > \frac{r}{s}$, then ps > qr and conversely if ps > qr then $\frac{p}{a} > \frac{r}{s}$

Properties of rational number

if *a*, *b*, *c* are any rational numbers then

a+b=b+a	Commutative property		
(a+b)+c=a+(b+c) Associative propert			
a+0=0+a=a	Additive identity		
a + (-a) = (-a) + a = 0	Additive inverse		
$a \times b = b \times a$	Commutative property		
$(a \times b) \times c = a \times (b \times c)$	Associative property		
$a \times 1 = 1 \times a = a$	Multiplicative identity		
$a \times \frac{1}{a} = \frac{1}{a} \times a = 1$	Multiplicative inverse		
$a \times (b+c) = a \times b + a \times c$	Distributive property		

Properties of real number

- 1) If a and b are any two real numbers, then only one of the following relation is true
- (i) a = b(ii) a < b(iii) a > b
- 2) If a < b and b < c then a < c
- 3) If a < b then a + c < b + c
- 4) Let a < b then
- (i) If c > 0 then ac < bc (ii) If c < 0 then ac > bc

If x is a real number absolute value of x is denoted by |x| and is define as

$$|x| = x$$
 for $x > 0$

$$= 0 \text{ for } x = 0$$

$$= -x$$
 for $x < 0$ and if $|x| = a$ then $x = \pm a$

Surds

A number of the form $\sqrt[n]{a}$ is said to be a surd if \sqrt{n} is a natural number and $n \neq 1$

 \sqrt{a} is a positive rational number

 $\sqrt[n]{a}$ is an irrational number

Laws of Surd

1)
$$(\sqrt[n]{a})^n = a$$
 $e.g (\sqrt[4]{10})^4 = 10$

2)
$$\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$$
 $e.g \sqrt[3]{20} \cdot \sqrt[3]{4} = \sqrt[3]{80}$

Laws of Surd

1)
$$(\sqrt[n]{a})^n = a$$
 $e.g$ $(\sqrt[4]{10})^4 = 10$

2) $\sqrt[n]{a}.\sqrt[n]{b} = \sqrt[n]{ab}$ $e.g$ $\sqrt[3]{20}.\sqrt[3]{4} = \sqrt[3]{80}$

3) $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$ $e.g$ $\frac{\sqrt[7]{10}}{\sqrt[7]{19}} = \sqrt[7]{\frac{10}{19}}$

4)
$$\sqrt[n]{\sqrt[n]{a}} = \sqrt[n]{\sqrt[n]{a}} = \sqrt[n]{\sqrt[n]{a}} e.g \sqrt[3]{\sqrt[5]{72}} = \sqrt[15]{72} = \sqrt[5]{\sqrt[3]{72}}$$

Forms of Surd

- 1) Pure surds : A surd of the form $\sqrt[n]{a}$ is called a pure surd e.g $\sqrt[3]{19}$ is pure surd
- 2) Mixed surds : A surd of the form $m \times \sqrt[n]{a}$ where $m \ (\pm 1)$ is a rational number, is called a mixed surd
- e.g $8\sqrt[3]{27}$ is mixed surd
- 3) Similar Surd
- \Rightarrow The surds of the form $p\sqrt[n]{a}$ and $q\sqrt[n]{a}$, where p and q are rational numbers are called similar surds
- e.g $\sqrt{4}$, $\sqrt[3]{4}$, $\frac{7}{8}\sqrt{4}$ are similar surds

Simplest form of a surd

A Surd $\sqrt[n]{a}$ is said to be in its simplest form if

✓ The radicand a has no factor which is n^{th} power of a rational number

 \checkmark The radicand a is not fraction

 \sqrt{n} is the least order

Comparison of surds

Suppose $\sqrt[n]{a}$ and $\sqrt[n]{b}$ are two surds of same order(n) then they can be compared by comparing there radicand (a, b in the e.g)

i)
$$\sqrt[n]{a} = \sqrt[n]{b}$$
 if $a = b$

ii)
$$\sqrt[n]{a} > \sqrt[n]{b}$$
 if $a > b$

iii)
$$\sqrt[n]{a} < \sqrt[n]{b}$$
 if $a < b$

Rationalization of surds: If we multiply two surds and the product we get is a rational number, then we say each surd is a rationalizing factor of the other surd

Factorization of algebraic expression

Factorization of an algebraic expression of the form

$$a^3 + b^3 + c^3 - 3abc$$

$$= (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca)$$

(i) If
$$a + b + c = 0$$
 then $a^3 + b^3 + c^3 = 3abc$

(ii) If
$$a + b + c \neq 0$$
 and $a^3 + b^3 + c^3 - 3abc = 0$ then $a = b = c$

Polynomials

An algebraic expression is called a polynomial if

$$\checkmark$$
 It's of the form $a_0 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1} + a_nx^n$

$$\checkmark a_0, a_1, a_2 \cdots a_{n-1}, a_n$$
 are real numbers

 \sqrt{n} is a non-negative integer

a polynomial in x is denoted by p(x),

If we arrange terms of polynomial such that power of xare in ascending or are in descending order, then we say polynomial is in the standard form

Degree of a polynomial: Suppose a polynomial is in *x*, then the highest power(index) of x is called the degree of the polynomial

Types of Polynomial

<i>7</i> I	,	
Monomial	One term	e.g 3, $10x$, $12x^3$
Binomial	Two terms	e.g $4x + 12x^3$
Trinomial	Three terms	e.g $3 + 10x + 4x^2$

Zero polynomial: If all coefficient of a polynomial are zero it's called a zero polynomial

e.g
$$0 + 0x$$
, $0x + 0x^3$

Constant polynomial: if a polynomial $p(x) = a_0 + a_1x + a_2x^2 + ... + a_{n-1}x^{n-1} + a_nx^n$ is such that $a_1 = a_2 = a_3 = \dots a_{n-1} = a_n = 0$ then P(x) is called constant polynomial i.e $p(x) = a_0 + 0 + 0 + 0 \dots = a_0$ p(x) = 12, p(x) = -2 are examples constant polynomial

Ratio and proportion

Properties of ratio

$$1)ma: mb = a: b = \frac{a}{m}: \frac{b}{m}$$

2) if
$$a : b$$
 and $c : d$ are the two given ratio then

$$\Rightarrow \text{ if } a \times d = b \times c \qquad \text{ then } a:b=c:d \\ \Rightarrow \text{ if } a \times d > b \times c \qquad \text{ then } a:b>c:d \\ \Rightarrow \text{ if } a \times d < b \times c \qquad \text{ then } a:b$$

Properties of equal ratios

$$\Rightarrow \text{if } \frac{a}{b} = \frac{c}{d} \text{ then } \frac{b}{a} = \frac{d}{c} \qquad \rightarrow \text{Invertendo}$$

$$\Rightarrow \text{if } \frac{a}{b} = \frac{c}{d} \text{ then } \frac{a}{c} = \frac{b}{d} \qquad \rightarrow \text{Alternedo}$$

$$\Rightarrow \text{if } \frac{a}{b} = \frac{c}{d} \text{ then } \frac{a+b}{b} = \frac{c+d}{d} \qquad \rightarrow \text{Componendo}$$

$$\Rightarrow \text{if } \frac{a}{b} = \frac{c}{d} \text{ then } \frac{a-b}{b} = \frac{c-d}{d} \qquad \rightarrow \text{Dividendo}$$

$$\Rightarrow \text{if } \frac{a}{b} = \frac{c}{d} \text{ then } \frac{a+b}{a-b} = \frac{c+d}{c-d} \qquad \rightarrow \text{Componendo-Divedendo}$$

Theorem on equal ratios: if $\frac{a}{b} = \frac{c}{d} = \frac{e}{f}$ then

$$\sqrt{\frac{a}{b}} = \frac{a+c+e}{b+d+f}$$

$$\sqrt{\frac{c}{d}} = \frac{a+c+e}{b+d+f}$$

$$\sqrt{\frac{e}{f}} = \frac{a+c+e}{b+d+f}$$

i.e each ratio = $\frac{a+c+e}{b+d+f}$

Proportion: if $\frac{a}{b} = \frac{c}{d}$ then a, b, c, d are said to be in

if
$$\frac{a}{b} = \frac{c}{d}$$
 then $a \times d = b \times c$

Continued proportion: if $\frac{a}{b} = \frac{b}{c}$ then a, b, c are said to be in continued proportion

we have if a, b, c are in continued proportion then

$$\frac{a}{b} = \frac{b}{c}$$
 i.e $b^2 = \frac{a}{c}$

 \therefore $b = \sqrt{ac}$ b is called geometric mean or mean proportional to a and c

Statistic

Mean of raw data : If $x_1, x_2, ... x_n$ are given observations all are numbers then we defined their mean as \bar{x} , and $\bar{x} =$ $\frac{x_1+x_2+x_n}{n}$

Mean of ungrouped data

$$\bar{x} = \frac{f_1 x_1 + f_2 x_2 \dots + f_n x_n}{f_1 + f_2 \dots + f_n}$$
 i.e $\bar{x} = \frac{1}{N} \sum f_i x_i$ where $N = \sum f_i$ Here, $x_1, x_2, \dots x_n$ are observations and $f_1, f_2, f_3 \dots f_n$ are fre-

quencies

Median

Suppose N is is the number of observation made, and they are arranged in either ascending or in descending order of magnitudes then

1. If N is Odd then Median =
$$\left(\frac{N+1}{2}\right)^{th}$$
 term

2. if N is Even then Median = A.M of
$$\left(\frac{N}{2}\right)^{th}$$
 and $\left(\frac{N+1}{2}\right)^{th}$ terms

Mode: The observation(s) which has a maximum number of frequency is called a mode

Percentage profit & loss

- 1) Profit = S.P C.P
- 2) Loss = C.P S.P

3) Profit percentage = $\frac{Pprofit}{C.P} \times 100$ 4) Loss percentage = $\frac{Loss}{C.P} \times 100$

Discount Rebate & Commission

- 1. Discount = printed price \times rate of discount
- 2. Selling price = printed price discount
- 3. Percentage of discount = $\frac{\text{discount}}{\text{printed price}} \times 100$

Trigonometry

Trigonometric ratios of an acute angle

$\sin \theta$	$\frac{\text{Opposite side of angle } \theta}{\text{Hypotenusee}}$		
$\cos \theta$	Adjacent side of angle θ Hypotenusee		
Tan θ	Opposite side of angle θ Adjacent side of angle θ		
$\operatorname{Cosec} \theta$	$\frac{\text{Hypotenuse}}{\text{Opposite side of angle }\theta}$		
Sec θ	$\frac{\text{Hypotenuse}}{\text{Adjacent side of angle }\theta}$		
Cot θ	Adjacent side of angle θ Opposite side of angle θ		

Relationship between the trigonometric ratios

sinAcosecA=1	$\sin A = \frac{1}{\cos e A}$	$cosecA = \frac{1}{sinA}$				
cosAsecA=1	$\sec A = \frac{1}{\cos A}$	$\cos A = \frac{1}{\sec A}$				
tanAcotA=1	$tanA = \frac{1}{cotA}$	$\cot A = \frac{1}{\tan A}$				
$tanA = \frac{sinA}{cosA}$	$\cot A = \frac{\cos A}{\sin A}$					

Ratios of angle

M. of $\angle^s \rightarrow$	0°	30°	45°	60°	90°
\downarrow Ratios of \angle^s					
$\sin heta$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
$\tan \theta$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	ND
$\cos e \theta$	ND	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1
$\sec \theta$	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	ND
$\cot \theta$	ND	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0

Perimeters(P) and Areas(A) of some plane fig's

- 1. Triangle: a, b, c are sides of \triangle , h is the ht
 - (a) Perimeter = a + b + c
 - (b) Area = $\frac{1}{2} \times base \times height$
 - (c) By Heron's formula Area= $\sqrt{(s-a)(s-b)(s-c)}$ here $s = \frac{a+b+c}{2}$
- 2. Equilateral \triangle : Each side=a
 - (a) Perimeter = a + a + a = 3a
 - (b) Area = $\frac{\sqrt{3}}{4} \times a^2$
- 3. Square: Each side=a
 - (a) Perimeter = a + a + a + a = 4a
 - (b) Area = $a \times a = a^2$
- 4. Rectangle: *l* is length & *b* is breadth
 - (a) Perimeter = $2 \times (l + b)$
 - (b) Area=length \times breadth i.e $l \times b$
- 5. Parallelogram: a,b are sides of $\|^m$ and h is ht.
 - (a) Perimeter = $2 \times (a + b)$
 - (b) Area=base \times height i.e $b \times h$
- 6. Trapezium: a, b, c, d are sides, h is height, here sides a & bare opp. || sides
 - (a) Perimeter = a + b + c + d
 - (b) Area= $\frac{1}{2}$ ×(sum of the lengths of \parallel sides)×(height) $=\frac{1}{2}(a+b)\times h$
- 7. Rhombus: l is the measure of all sides and d_1 , d_2 are the diagonals.
 - (a) Perimeter = $4 \times l$
 - (b) Area= $\frac{1}{2}$ ×(products of the diagonals) $= \frac{1}{2}(d_1 \times d_2)$
- 8. circle:*r* is the radius.
 - (a) Perimeter = Circumference = $2\pi r$
 - (b) Area = πr^2